skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Vong, Man Hou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Native oxides form on the surface of many metals. Here, using gallium‐based liquid metal alloys, Johnson‐Kendall‐Roberts (JKR) measurements are employed to show that native oxide dramatically lower the tension of the metal interface from 724 to 10 mN m−1. Like conventional surfactants, the oxide has asymmetry between the composition of its internal and external interfaces. Yet, in comparison to conventional surfactants, oxides are an order of magnitude more effective at lowering tension and do not need to be added externally to the liquid (i.e., oxides form naturally on metals). This surfactant‐like asymmetry explains the adhesion of oxide‐coated metals to surfaces. The resulting low interfacial energy between the metal and the interior of the oxide helps stabilize non‐spherical liquid metal structures. In addition, at small enough macroscopic contact angles, the finite tension of the liquid within the oxide can drive fluid instabilities that are useful for separating the oxide from the metal to form oxide‐encased bubbles or deposit thin oxide films (1–5 nm) on surfaces. Since oxides form on many metals, this work can have implications for a wide range of metals and metal oxides in addition to explaining the physical behavior of liquid metal. 
    more » « less
  2. Abstract Pastes and “foams” containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty‐like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide‐lined air “pockets” into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4–5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors “grow,” fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved. 
    more » « less
  3. Abstract This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non‐spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e‐skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari. 
    more » « less
  4. Soft materials tend to be highly permeable to gases, making it difficult to create stretchable hermetic seals. With the integration of spacers, we demonstrate the use of liquid metals, which show both metallic and fluidic properties, as stretchable hermetic seals. Such soft seals are used in both a stretchable battery and a stretchable heat transfer system that involve volatile fluids, including water and organic fluids. The capacity retention of the battery was ~72.5% after 500 cycles, and the sealed heat transfer system showed an increased thermal conductivity of approximately 309 watts per meter-kelvin while strained and heated. Furthermore, with the incorporation of a signal transmission window, we demonstrated wireless communication through such seals. This work provides a route to create stretchable yet hermetic packaging design solutions for soft devices. 
    more » « less